
Final Year Project Report

Object Detection and Tracking in
Images and Point Clouds

Daniel J. Finnegan

A thesis submitted in part fulfilment of the degree of

BA/BSc (hons) in Computer Science

Supervisor: Dr. Eleni Mangina

Moderator: Dr. Mauro Dragone

UCD School of Computer Science and Informatics

College of Engineering Mathematical and Physical Sciences

University College Dublin

March 24, 2012

Page 1 of 29

Table of Contents

Abstract . 3

1 Introduction . 5

1.1 Preamble . 5

1.2 Initial Specification & Overview . 5

1.3 Tracking . 6

1.4 Justification . 6

1.5 Roadmap . 7

2 Background Research . 8

2.1 Preamble . 8

2.2 Technology . 8

2.3 Algorithms and Research . 9

3 Design . 12

3.1 Preamble . 12

3.2 Design Specification . 12

3.3 Software Practices . 13

3.4 Work Breakdown Structure . 14

4 Project Implementation . 15

4.1 Preamble . 15

4.2 System Overview . 15

4.3 2D Tracking Using OpenCV . 16

4.4 3D Visualization and Augmented
Tracking With PCL . 18

4.5 Message Passing in ROS . 19

4.6 Summary . 19

5 Results & Conclusions . 21

5.1 Preamble . 21

5.2 Performance Benchmarking . 21

Page 1 of 29

5.3 Critical Analysis . 23

5.4 Conclusions . 23

6 Future Work . 25

6.1 Autonomous Control of a Robot . 25

6.2 Optimisations and Distribution . 25

6.3 Closing Comments . 26

A Appendix . 28

A.1 Boost library . 28

A.2 Application Programming Interfaces . 28

A.3 Definitions . 29

Page 2 of 29

Abstract

This project was an attempt at developing an object detection and tracking system using
modern computer vision technology. The project delivers an implemented tracking system.
It consists of a hybrid of optical and modern infra-red technology and is applicable to areas
such as unsupervised surveillance or semi-autonomous control. It is stable and is applicable
as a stand alone system or one that could easily be embedded into an even larger system.
The project was implemented in 5 months, and involved research into the area of computer
vision and robotic automation. It also involved the inclusion of cutting-edge technology of
both the hardware and software kind. The results of the project are expressed in this report,
and amount to the application of computer vision techniques in tracking animate objects in
both a 2 dimensional and 3 dimensional scene.

All references in the text to “the author” refer to the author of this report.

Page 3 of 29

Acknowledgements

The author would like to thank the following list of people and groups for their technical
support and guidance throughout the project:

Dr. Eleni Mangina (Supervisor)
Dr. Mangina acted as the project supervisor. She provided guidance and support
throughout the project in the form of project management, specification and review of
the report.

Dr. Mauro Dragone (Moderator)
Dr. Dragone was the project mentor and moderator. Dr. Dragone provided support in
the form of face-to-face meetings, Skype online discussions, technical advice and report
review. Dr. Dragone, along with the help of Dr. Mangina, helped direct the author
in determining the scope of the project and handling necessary modifications to the
project specification.

Mr. David Swords
Mr. Swords provided the author with a primer on the ROS system during the early
stages of the project. His help was invaluable in shaping the author’s understanding
and confidence in interfacing with the ROS system.

UCD Robotics Group
For allowing the author to participate in the first ever UCD robotics day and showcasing
the project to all who attended the event.

Dr. Guénolé Silvestre
For providing insight into correct scientific conduct during projects and general scientific
analysis of project work.

Page 4 of 29

Chapter 1: Introduction

1.1 Preamble

This project involved implementing real-time tracking software. This chapter provides a
discussion of the project specification. It also gives a high-level overview of the system,
leaving design and implementation details for discussion in the respective chapters. It also
provides a “roadmap” for the reader about the overall presentation and structure of the
report.

1.2 Initial Specification & Overview

The project goal was to produce a working system for tracking objects in 3 dimensional space.
The aim of the project was to begin from this spec, and design a solution to the problem. After
a satisfactory solution was designed, the task came to implement the solution. Throughout
the project, many problems arose. These problems varied from performance issues related to
code, and from implementation issues related to limitations of software technologies used. All
attempts at overcoming these problems are discussed in this report. Also, as is common case
with research, as the project progressed, the resulting tracking system presented in this report
differs from the initial design specification; it is more generic and focuses on not tracking pre-
empted objects but any objects that enter the sensor field of view (fov). Chapters 3 and 4
describe the design and implementation of the project and discuss the approach taken to go
from specification to the system presented alongside this report.

The system incorporates new technology in an attempt at the tracking problem. The system
is driven by data streamed from the XBox Kinecttm, and different components of the system
process the data in different ways. The center of the system is a user controlled graphical
interface for providing feedback and semi-control of the components. A high level description
of the system is shown in figure 1.1. The figure describes the system as a series of components
each with their own specific duty to perform. The components are all launched simultaneously
via the ROS system (more detail on this in chapter 4) and all shutdown when the user signals
the GUI to close. The GUI provides the user with up to date tracking information via the
2D optical tracker and the 3D depth based tracker. Both trackers provide visualization
capabilities, the optical tracker providing an RGB video stream and the 3D tracker providing
a point cloud visualization of the scene.

The next section provides an introduction to tracking, outlining the Kinect sensor and pro-
viding some detail of the software technology used in the project.

Page 5 of 29

Figure 1.1: High level illustration of the breakdown of system component delegations. Data
is generated from the Kinect sensor, and passed to the GUI and the optical and depth based
tracker facilities. The GUI is centered, as it provides a means to communicate with the other
components.

1.3 Tracking

As stated, the goal of this project was creating tracking software. This task is an ongoing topic
for research, with continous development of algorithms and implementation code. Results
of this research have been applied to a range of products such as video surveillance, robotic
vision and autonomous flight. In robotics, tracking is frequently used to provide a means
for localization and mapping of an unknown environment. One example of this has been the
application to enable robots to act human-like and play games like soccer [DOL+05]. The
tracking system implemented with this project incorporates the use of the Kinect sensor to
provide real-time depth analysis. The sensor is described in more detail in 2.2.1.

Using this data, it is possible to track an object in three dimensions. Applying a mathemat-
ical filter to eliminate noise readings from the sensor, a smooth, reliable tracking system is
implemented. The filter in question, a Kalman Filter [WB06], is applied in two dimensions
(xy plane) to smooth results of the positional data. How this is extended to incorporate the
3D data is explained in chapter 4.

1.4 Justification

There were a number of reasons for undertaking this project. It provided an interesting
subject for research, as it combined modern sensor technology with an older problem. The
project also implemented a solution that has many unique attributes:

• As the sensor is rather cheap, the project is a cost-effective alternative to other tracking
systems.

• The software makes use of open-source implementations. The sensor is interfaced via
an open-source library consisting of drivers and an API. At no point is the project

Page 6 of 29

2 Background Research

Discusses reading material, tech-
nologies used and related work. It
also discusses in detail the algo-
rithms that are implemented in the
project

3 Design & 4 Implementation
Design and structure of the project
API’s and limitations of software
used. Details of application code.

5 Results & Conclusions
Performance benchmarking against
a similar software implementation.
Critical review of the software.

6 Future Work
Suggestions for improvements and
future work are proposed here.

Table 1.1: Table charting the structure of the report. All the chapters are presented in the
order dictated by this table.

hindered by proprietary technologies.

• The solution uses the Robot Operating System (ROS, discussed in more detail chapter
3), an open-source framework for robots. ROS is developed by an extremely active com-
munity and provides high end abstraction of many low level details regarding robotics.

• It provides an interesting baseline to robotic development and computer vision.

The project is also extendable; A desired feature of the software was to provide a control
framework for the helicopter along with the tracking module. This can be specified as an
extension for a future final year project building on the work here (this is discussed further
in chapter 6).

Throughout the project, Object Oriented principles were followed as best as possible. In
chapter 3, the project design is discussed in detail, using UML diagrams to show the func-
tional connections between classes. Documentation was also kept, providing a readable,
maintainable code base. Finally, many disciplines learned throughout the UCD computer
science degree were used to implement the software. This led to a project that demonstrates
an ability reachable by a computer science degree.

1.5 Roadmap

This document is structured in a top-down fashion. Chapter 2 discusses reading material
that proved useful throughout the project. This is proceeded by core chapters which focus on
the details of the project; design, implementation and results & conclusions are all presented
and analysed for the reader. Table 1.1 gives an indication to the structure of the report.

The end of the report features an appendix of any elements of the project that may require
extra coverage, but are outside the scope of the project.

Page 7 of 29

Chapter 2: Background Research

2.1 Preamble

Building on what has been stated in the previous chapter, this chapter details the reading
material that was covered throughout the project. As obstacles were met in the implemen-
tation of the project, it was necessary to re-think particular areas of code (algorithms, local
optimisations etc.) and change the implementation to allow for better performance among
other extensions. Research and reading carried out as the background research related to
the project are described. This chapter will outline key papers that described the general
computer vision techniques included in the project and reflects on what was studied.

2.2 Technology

As the goal of the project was to create a tracking system, it was important to first understand
the state of the art technology being used today, and the algorithms these technologies use.
With the main component being the XBox Kinecttm, It was necessary to become familiar
with the camera’s technology to be able to succesfully employ it in the project.

2.2.1 XBox Kinecttm

The Kinect sensor is an RGB-D (color and depth) sensor and operates via twin optical cameras
and a LIDAR sensor on the front of the device. Also located on the front of the device is
a multi-array microphone system for detecting sounds from different angles. These sensors
operate in conjunction with one another to provide a 3D sensor capable of tracking objects
and triangualting sound from all angles within a designated surrounding region. Developed
promarily for consumer entertainment purposes, its use in active research has become popular
due to its cheap price range in comparison with competing devices of a similar capability.
[Sun11].

Although an official SDK for the Kinect exists (it was released by Microsofttm in the summer
of 2011), this project is implemented using open-source alternative software. The OpenNI
(www.openni.org) API was released shortly after the Kinect sensor, and allows accurate
interpretation of the Kinect’s data streams. It was developed as part of a joint project to
enable the open-source community to develop with this new technology, and the low level
drivers are used in this project as a means of interacting with the Kinect.

Page 8 of 29

www.openni.org

2.2.2 Robot Operating System

The Robot Operating System (ROS) was used extensively for this project. An open source
system for robotics, ROS allows easy development of software used to interact with a range of
robotic devices and middleware [QGC+09]. The ROS interface for the Kinect was used in this
project due to it’s message passing framework for processes operating on the same machine
and even across other machines. Also the strong, active community provided a platform for
help on matters relating to compilation, execution environment and algorithms implemented
in the ROS packages. This system is discussed in more detail in chapter 3.

2.2.3 Point Cloud Library

The Point Cloud Library (PCL) was another open-source system used extensively in the
project. PCL is a high-level API for 3D rendering and visualization and was used to interface
with the Kinect’s 3D data output [RC11]. PCL can be used in tandem with ROS, and it was
chosen for this purpose as a way to manipulate and understand 3D data from the Kinect.
PCL is also covered in chapter 3 where the tracking system developed is discussed in more
detail.

2.3 Algorithms and Research

As well as understanding the software and hardware technology used in computer vision,
extensive background reading was done on the algorithms and techniques widely used in
computer vision applications. This section gives an overview of some of the papers read and
provides citations of the papers noted. For some sections that require some extra explaining,
the reader is referred to the appropriate appendix section.

2.3.1 Object Detection in 2D:

Foreground & Background Segmentation

There are many algorithms for detecting objects in a data stream. One such algorithm
that was researched and tested for this project is described in [HLGT03]. Videos contain-
ing background objects under various conditions pertaining to lighting and movement were
processed and moving objects were segmented from the foreground based on classification
under Bayesian rules (See A.3). The background is modelled according to the probability of
a pixel being in the background or foreground. This is used in determining feature vectors
and classifying by the a prior probability.

Feature vectors chosen for each pixel mainly consist of color composition. Color co-occurance ,
where a group of neighbouring pixels can share the same color properties, is also incorporated
by maintaining the values at time t − 1. This is structured into the feature statistics table
shown by [HLGT03], and parameters for the quantization of the image pixels and the size
of the statistics table (number of features to consider) were chosen through investigation to
yield good results.

The main algorithm in the paper is based on the statistical modelling given, where a number

Page 9 of 29

of features are detected by following the steps of the algorithm. The algorithm can be broken
down into four steps (Detailed description is omitted here as it is not relevant; the reader
may wish to refer to the citation):

• Pixels of insignificant change are filtered via temporal differencing (See A.3), where
analysis of previous state can be used to identify pixels that haven’t changed. Pixels
are classified by this background and temporal differencing.

• If a pixel has been detected as being temporal, it is classified as a motion pixel and
is further classified by feature vector comparison and reference to the feature table as
being foreground or background.

• The point set is smoothed by applying a filter operation to any wrongly labelled back-
ground pixel to segment the foreground objects.

• The background reference image is updated every time a new point of ‘insignificant
change’ is found [HLGT03].

The paper then goes on to compare the results obtained against benchmarked algorithms
mainly relating to gaussian distribution methods. This alogorithm was originally intended
for use in the project but was switched after some testing for the algorithm below. The
following algorithm provided a less authoritative tracker, but a quicker frame rate.

2.3.2 Object Detection in 2D:

Adaptive Background Mixture Model for

Real-Time Tracking

The algorithm chosen to implement the 2D tracking system was an implementation of the
algorithm proposed by [KB01]. This algorithm is an improvement on [SG99], where the
authors implemented a “recent value” set in order to keep the background model up to date.
The original algorithm used a non-parametric update with thresholding by maintaining a
background model of the scene via a reference image. Background subtraction is processed
on the scene to segment the foreground objects. The background model is based on a mixture
of gaussian distributions, and different weights are used to represent the temporal portions
of colors in the scene. When marking a pixel, weights are applied to each gaussian, and the
one with the most probable outcome is used to mark the pixel. As Bowden et al. claim, this
method was detrimentally affected by the stochastic update functions used to update the
background model. Bowden et al. improved on this by using an expectation-maximisation
approach that uses update functions considering the L latest windows of gaussian models.

This algorithm features in the 2D object tracking feature of the project via an OpenCV
implementation of a blob tracker. This blob tracker was used to estimate the location of the
helicopter in 2D and forward processed output to the 3D tracker.

Page 10 of 29

2.3.3 Kalman Filter

Another important aspect of the project was handling noise output from the sensor. All data
output from the Kinect is subject to noise, and for this reason it was necessary to process
the data through a filter.

A highly cited filter is the Kalman filter. It is a means to compute, with minimal error,
the state in which a process resides [WB06]. It employs mathematical functions to estimate
the state of an object (or more abstractly a process) in the past, present and future and
it can do this when presented with an unknown model. It is a particle filtering technique,
a means of estimating the true path of a model system (in this case an “object”) during
its movement. Operating on a “discrete-time controlled process” [WB06], it will allow for
the filtering of noisy data received by the tracking system of the helicopter. The inputs to
the filter are the (noisy) current x-y-z co-ordinates of the helicopter, the orientation and
perhaps the velocity/acceleration, while the output is an estimated state. This “state” is
representative of the tracked helicopter, and can be used to compute the future state of the
system.

The filter has a number of components. It keeps track of its previous state x′ in time step
k − 1, referred to as the a priori state [WB06], and, using a given measurement z, it tries to
estimate its current state x′′ at step k. With these values come margins for error, and these
are represented as linear equations. These errors are known as the a priori and a posteriori
estimate errors [WB06]. The error covariance can then be derived as the matrix consisting
of the error estimate and its transpose. Finally all these values are used in the following
algorithm which implements the Kalman filter (shown here as pseudo-code):

While (true) {

Compute a posteriori state estimate from a priori estimate;

Update state using this estimate;

Continue;

}

Also, the filter has an equation for representing the difference in distance between the true
value and the predicted value called the “residual” [WB06]. If this value is to be zero at any
time, this means that both values are in agreement, and the chances of achieving an accurate
filtering is high. The equation for computing the new state involves the previous state and
linear combination of the resulting difference between observations, weighted to a factor K
[WB06]. Welch et al attribute the weighted factor K to describing the “trustworthy-ness”
of the estimate. As the error covariance for the measurement approaches zero, the actual
measurement received as input to the filtering step can be trusted with being very likely.
Conversely, if the a priori error covariance value falls, the real estimate can be regarded as
less accurate and the predicted value should be considered as more reliable [WB06].

In its second half, the paper on the introduction to the Kalman filter begins to describe the
extended Kalman Filter. The extended version of the filter is used when the measurement
process relationship is not linear [WB06]. This project focused on tracking moving objects
space. The measurements taken to express their state were measurements of position and ori-
entation, both linear equalities. The Kalman filter features in the optical tracker component
of the project (See chapter 4 , section 4.3).

Page 11 of 29

Chapter 3: Design

3.1 Preamble

This chapter introduces the project formally, providing a specification of the design and
discusses the ideas and implementation issues that had to be considered with this design.
It outlines reasons for the inclusion of certain technologies and their appropriateness to the
task at hand. The chapter also discusses design issues from a software perspective; software
methodoligies that were adhered to as much as possible, such as Object Oriented Design
principles, Test Driven Development, software documentation and version control software.
Finally, it closes with some comments about the design and how the project outcome was
affected by design decisions made early on.

3.2 Design Specification

As stated previously, the project specification was to investigate and build a system for robust
tracking of an object in 3 dimensional space. More formally, the objective was for a software
solution which would enable real-time tracking of this object which would then ultimately
lead to the foundations for a fully-automated control system. In order to achieve this goal,
the project design had to capture all aspects of the system at run-time, and represent the
flow of data through the system. Figure 1.1 in chapter 1 shows a high level outline of the
system.

The system was originally designed, from a software perspective, as a single process applica-
tion that ran in a multi-threaded environment. This meant that all components of the system
ran in seperate threads, with the main thread being allocated to the GUI. While this design
provided a simple means to implement the system, there were many problems with it.

• This violated the ROS design. ROS is a peer-to-peer system for implementing IPC
(inter process communication) (See A.3) [QGC+09]. This is to encourage an online
system implemented through different processes utilising message passing techniques,
perhaps even on different machines. A single process application would oppose this.

• The project was implemented completely in C++, using the Qt framework (See A.2.3).
Qt provides its own communication framework known as ‘signals and slots’. Problems
arose in API (application programming interface) compatabilities. As is discussed in
chapter 4, the project was developed using many API’s in order to abstract the low-
level detail of the sensor and data formats. The OpenCV highgui library (See appendix
A.2.1) is used to visualize the optical tracker. This visualization cannot be made using
multiple-threads as the API requests that all interactions with window displays be made
from the main GUI thread. This was not the case in the original system design.

• A similar problem occured in the 3D component. The point cloud library for visualizing
the sensor data requires same thread access to the visualization window. This would
not be possible with the original design.

Page 12 of 29

Taking all this into account, it was obvious that a redesign was in order. The revised design
is based on IPC between three main executables. The optical tracker component located
in tracker exe.cpp implements the 2-dimensional tracking facility. The component is self
contained, and utilises ROS to subscribe to and publish RGB image data. The 3D visualizer
code, located in cloud exe.cpp, deals with the 3-dimensional data. It subscribes to messages
published by the optical tracker in order to process it’s own point-cloud data and display it
to the user. The third and final component is the GUI contained in main window.cpp. This
process subscribes to all published data, providing the user’ of the system with real-time
feedback of the trackers and allowing them to shutdown the system.

3.3 Software Practices

All application code in the project is coded following an object oriented design. All compo-
nents in the system are derived from objects, which have their own private attributes and
provide an interface in which they can be accessed by other components in the system. This
approach provided a means to abstract the system into components easier, as all operations
were designed as interactions between objects in the system. It also made sense during im-
plementation, as the classes in the system have a predefined objective and workload. For
example, the 2D tracker only needs to interpret a video stream from the sensor and it can
then process it internally, with little (or no) interaction with any external component of the
system, other than when it goes to publish its results. The fact that there really is no need for
shared memory at all also made the design of separate processes more feasible and a natural
goal to focus on.

Test driven development was also applied in the project’s development. Using the google test
framework gtest, test code was written to help validate application code. While this policy
was not strictly adhered to, it was followed as best as possible, in some cases only being
deviated due to the difficulty in writing tests for message passing code. Also, as the project
was not a software development based project rather a research based, the emphasis was on
testing and evaluating modern computer vision technology rather than producing industrial
standard application code.

An important part of the project’s implementation was of course revision control. Throughout
development, backups were created using the Git revision control system (See A.3). Git was
chosen partly due to familiarity, with this project’s author having used it in other projects,
and it’s simplicity. Git is very powerful, and a complete project repository can be created in
just a few commands. Remote backups of code were pushed to the remote repository. This
allowed for a safe environment in which code could be written. The branching ability of the
revision control system also made it simple to create a new branch for developing a particular
part of the system without affecting the current master stable build. When satisfactory, this
branch could then be merged into the master build and the process iterated over again. This
solution is much cleaner and less prone to error than the typical backup process involving
creating archives of files and numbering them for logging.

Page 13 of 29

3.4 Work Breakdown Structure

The project design specified 5 months of coding implementation. During these 5 months,
application code was written parallel to learning the required API’s used in development.
A lot of time was spent investigating other solutions, to acquire greater knowledge of the
problem domain and how the task has been attempted before. A diary was kept (http://
csserver.ucd.ie/~dfinnegan/forth_year_project/index.html) which reported discov-
eries and logs of data captured with the Kinect. Initially, the project focused on building
upon the RoboEarth software [WBC+11]. The software for object recognition and tracking
is available via the Roboearth stack in ROS. Work began with this software, building models
(Figure 4.4) of the helicopter and using these point cloud models to track the helicopter.
During this period, it became apparent that the roboearth software was limited to using the
accompanying marker template to allow for the object space to be defined where model gen-
eration could take place. It was for this reason that the decision to pursue a hybrid tracker
was made.

Figure 3.1 shows a gantt chart relating to the work completed in the initial stages of the
project. It shows the period spent on the roboearth software and the gathering of core
technologies that would be used in implementing the final project. This breakdown of work
allowed for contingencies in the project, as time was managed by creating periods of work,
where reading and implementation would be done in tandem, saving time and avoiding pitfalls
such as deadlines and over-running of reading. The work breakdown structure (WBS) was
an important consideration in the design of the project, as it would control the project’s flow
and also define a strict plan, allowing for a steady and incremental approach to taking the
project from specification through to solution and implementation.

Figure 3.1: A gantt chart representing the work done during the initial stages of the project.
At this point, the final version of the software had not been defined yet, and the main
background research and environment setup were engaged.

The next chapter builds upon the discussions here and gives more detail on the class design
of the system and the components which make up the tracking software.

Page 14 of 29

http://csserver.ucd.ie/~dfinnegan/forth_year_project/index.html
http://csserver.ucd.ie/~dfinnegan/forth_year_project/index.html

Chapter 4: Project Implementation

4.1 Preamble

Following on from the previous chapter’s introduction to the project design, the goal of this
chapter is to inform the reader of the actual implementation of the code. It details the steps
taken to render 3D point clouds from the Kinect, how the optical tracking component works,
and the overall integration of all the components that make up the system. Brief analysis
of the project’s code is made and discussed, along with the technologies and API’s used in
implementing the project. Unified Modeling Language (UML) diagrams are presented which
illustrate the system and the interactions between components. References are made to parts
of the code which perform key operations in the system.

4.2 System Overview

The system is comprised of 3 main components; the optical 2D tracker, the 3D visualizer,
and the GUI. A typical use case of the system is presented in figure 4.3. The system is
initiated via the roslaunch command. This command reads the launch configuration from
the systems .launch configuration file and boots all the components required for the system to
run. Although manual initiation is possible by simply executing the components seperately,
this configuration provides a clean shutdown using ROS’s shutdown hook.

During execution, the system process’ two main data streams published by the sensor. The
system interprets the RGB image stream using the optical tracker and the depth points
stream using the visualizer. Some components also generate and publish their own messages.
Any interaction with the system is done via the GUI. The interface is composed of a single
text panel which is updated dynamically every time a new object location is found. The
interface also has a button for shutting down the the entire system. Figure 4.2 shows a class
diagram interaction for the nodes in the system.

Most of the implementation of the project occured during the post-christmas period, through-
out the holiday period. This gave ample time to collect log data that could be used in testing
the system, as well as providing time to use the roboearth software, build models and gather
results and further logs. Figure 4.1 shows a gantt chart of the weeks leading up to the project
completion.

The following sections are dedicated to the individual components of the system. Each section
breaks down into subsections to discuss in finer detail parts of the component that deserve
separate attention.

Page 15 of 29

Figure 4.1: A Gantt chart of the refactoring code during February and March 2012. At
this point, development focused on improving the code quality and completing components
such as the GUI. The chart shows onging testing, that was specified for an arbitrary date
after project completion to emphasize that the testing would continue throughout the entire
project.

4.3 2D Tracking Using OpenCV

The 2D optical tracker is implemented using the computer vision library OpenCV. OpenCV
is an extensive vision library implemented in C++ and Python, with other language wrap-
pers. The library provides implementations for many different computer vision algorithms,
creating an API that is rather simple to use and that can yield powerful results with little
code. OpenCV plays a part in this project as the basis of the optical tracker component for
the system. The system makes use of OpenCV’s Kalman filter implementation and of the
algorithm described previously in 2.3.2 and cited in [KB01]. The following subsections detail
the optical tracking system.

Figure 4.2: Class diagram showing the inter-
action between the tracker and visualization
components with each other and with the sen-
sor. The notation specifying the none to many
relationship is true, as any number of nodes
can subscribe to a certain topic in ROS. How-
ever in this system there is only one of each

Figure 4.3: Use case diagram showing simple
interaction with the system, in this case the
user initialising the system via roslaunch

Page 16 of 29

4.3.1 Object Detection and Blob Tracking

The tracking is implemented using the Blob structure of the OpenCV auxillary library
cvaux.h. The tracker class in tracker.hpp creates instances of these blobTracker modules.
It acts as an accessor around the module, allowing for static initiation of the tracker utilising
the algorithm chosen and it contains methods for processing images by passing them through
the tracker pipeline. The pipeline involves subtracting the background via the mixture of
gaussians algorithm, then detecting moving objects and assigning a “blob” ID to each object
and tracking it through space. One of the main criticisms the author has towards the API
is the lack of documentation of the code. The OpenCV site http://opencv.willowgarage.

com/wiki/VideoSurveillance acknowledges this defect in the code and provides a “best
possible” documentation of what the code does at a high level.

In order to utilise the tracker in the project, it was necessary to look at the source code of
the samples provided with the OpenCV library. While also not very well documented, the
pipeline can be setup relatively simply with a few lines of code. This initiation protocol is
wrapped by the tracker class in the setup tracker() method. After having instanciated the
blob tracker, the optical tracker component can then subscribe to the image topic published
by the sensor and enter the main ROS event loop. It is in this loop that all callbacks are
handled. To allow for a steady frame rate, the tracker operates at 20 fps using a buffer capped
at 10 messages. 1

The final piece necessary was the use of the ROS cv bridge stack. This stack is used to convert
the ROS messages to the format required by OpenCV, as the tracking implementation uses
the old IplImage format originally used in the intel image processing library. A considerable
source of difficulty during the project was in the various conversion utilities required between
different data formats. As the project uses a mix of cutting edge software and this outdated
format, a lot of time was spent on remedying compiler issues and linkage errors by using
deprecated versions of the API’s.

4.3.2 Blob Recording and Message Passing

After processing the image and tracking the blobs, the optical tracker component must then
send this data to the 3D visualizer. This is implemented by creating custom messages via the
rosmsg utility. Two custom messages were created for the tracker component (defined in the
Blob.msg and VectorBlob.msg files). After gathering the co-ordinates of each blob, this data
is packaged into a Blob object. At one cycle of development, these blobs were packed into
a vector, allowing a single VectorBlob message to be published. After testing and further
design analysis, it was decided to just publish the location of the largest blob in the scene,
thus making use of just the Blob.msg file.

The custom messages were generated into valid C++ classes using the rosmsg utility. This
is the standard method for implementing custom messages in ROS. All messages are passed
as shared pointers using the boost C++ library for safe memory management (See A.1).

1This was influenced by the OpenCV highgui libraries framework for displaying video images. In order

to render the images, the main event thread must be paused with a call to cvWaitKey(). When this value

was set to a high delay, the sensor would be publishing messages far too quickly for the tracker to maintain a

steady frame rate.

Page 17 of 29

http://opencv.willowgarage.com/wiki/VideoSurveillance
http://opencv.willowgarage.com/wiki/VideoSurveillance

4.4 3D Visualization and Augmented

Tracking With PCL

In order to render the depth point cloud data published by the sensor, the Point Cloud Library
(from here on referred to as PCL) was used (See A.2.2). PCL is an industry standard library
for processing 3 dimensional point cloud data. It was chosen as the 3D rendering engine for
the project due to its integration with ROS. As in the optical tracker implementation, there
were significant problems in using the API due to changes in the latest stable release and
ROS not being up to date at the time of this project’s implementation. PCL features many
high level implementations of general point cloud processing applications, and provides class
based implementations of algorithms related to 3D processing. PCL’s high level visualization
toolkit, discussed below, was used to incorporate 3D data from the Kinect into the project.
The following subsections aim to describe further the use of PCL in the project to render 3D
point cloud data.

4.4.1 Visualizing Point Cloud Data

At the heart of the visualizers implementation is PCL’s PCLVisualizer class. This class is a
complete rendering toolkit, implementing an OpenGL-rendered scene of the input 3D point
cloud . The visualizer also has keyboard hooks to respond to user input, and operates via it’s
own internal event loop. The visualizer in this project wraps around this class by utilising
the live stream from the kinect to update the cloud rendered. Point clouds are passed to the
visualizer through ROS and then displayed in the viewer.

The aim of the 3D point cloud was to provide an augmented tracker; one that would track the
object in xyz dimensions allowing for a global estimate of the query object. As the roboearth
software applied a point cloud model of the object in question, this goal of this project was to
first attempt at recreating this behaviour and then improving the tracking system. Using the
software, a model of a helicopter was built and this model was used as input to the system.
Figure 4.4 shows a screenshot of the model being successfully located in the cloud.

Although the RoboEarth software utilises a point cloud model of the object being tracked,
this project does not focus on robust model based tracking but instead is an attempt to create
a hybrid tracker by combining the 2D and 3D data from the sensor. In order to do this, it
was necessary to build the 3D visualizer so that it would subscribe to data topics from the
sensor itself and from data published by the 2D tracking component. Therefore, before a
cloud is visualized, it must be processed first. This processing is lightweight, involving an
indexing routine into the cloud data in order to extract key points. The code relating to this
can be found in cloud exe.cpp.

4.4.2 Augmented 3D Tracking

Normally, it would not be possible to use the output of the 2D tracker directly with the 3D
visualizer. However, the OpenNI drivers for interfacing with the Kinecttm sensor allow for
a depth registered point cloud to be output. This cloud is a processed cloud consisting of
the optical camera’s data and the IR sensor’s data in order to output a cloud featuring a
1-1 mapping for the RGB image and point cloud data. This made it possible for the system
to simply query the raw point cloud data. As the blob tracker utilised by the 2D tracking
component outputs pixel co-ordinates of a tracked blob in the scene, these values can be used

Page 18 of 29

Figure 4.4: A screenshot of the roboearth soft-
ware being executed with a model built using
the software. The screenshot shows the heli-
copter being detected, shown as a red highlight
in the software rendering window.

Figure 4.5: A screenshot of the tracking sys-
tem tracking a small RC Lamborghini car. The
image shows the red marker box where the
tracking system has estimated the car to be.

to index the point cloud’s raw data array. Upon locating the query point, the xyz co-ordinates
of the point in the cloud (relative to the sensor device) can easily be read from the point
itself.

4.5 Message Passing in ROS

In order to process the point clouds mentioned in 4.4.1, the 3D tracker partitions the work
into two threads. The main thread of execution focuses on handling the ROS integration,
implementing the required callback methods to gather the data published by the sensor
and by the optical tracker. These callback methods simply buffer the data into two queues
to be processed by the second thread. Both threads implement a simple version of the
producer/consumer problem through the use of boost mutexes and lock mechanisms (for
details regarding the boost library, see A.1). The threads feed into and consume from a pair
of STL (See A.3) queues holding blobs and point clouds. Whenever the consuming thread
sees that neither of the queues are full, it pops the head of each queue and uses the popped
blob and point cloud in order to create the annotated cloud, showing the estimated location
of the blob and then passes this to the underlying cloud viewer for visualization to the user.

This P/C implementation is not regarded as the safest or most thorough implementation
possible. Likely improvements that could be made to the code (as well as any related opti-
misations) are discussed in chapter 6.

4.6 Summary

This chapter presented the system to the user from an implementation perspective. It dis-
cussed the components of the system and their role in the systems execution. Details on
implementation issues regarding external libraries were given, with references to exact uses
in the system. An indication to how the system operates was provided via the use of UML
diagrams and class interaction illustrations. All code snippets were withdrawn, opting for
documentation references in place of cluttering code functions. In the next chapter, the re-
sults of the program are presented for critical anlaysis. All criticism is from the authors own

Page 19 of 29

viewpoint, with comparisons being made between the system presented in this project and
with a benchmark system provided as part of the RoboEarth european funded project on
robotic advancement [WBC+11].

Page 20 of 29

Chapter 5: Results & Conclusions

5.1 Preamble

This chapter focuses on presenting the results of testing the run-time efficiency of the ap-
plication in comparison to the RoboEarth software. As both systems use different methods
for tracking, it would be unfair to compare the systems based solely on the tracking results.
Although such a comparison is discussed to support the performance of this project’s system,
a more fair and unbiased comparison of system resource consumption is made. This com-
parison is based on CPU and memory usage of both systems during execution. In the final
subsections a recap of the work made is used to establish conclusions of the project, lessons
learned and the author’s own critical review of parts of the project.

5.2 Performance Benchmarking

This section provides analysis of the results obtained in comparing the performance of the
system against the roboearth tracker. The reader is informed that during the performance
testing, both systems were running on an intel i3 core processor, clocked at 2.4GHZ and
running the Ubuntu operating system. All benchmarks were recorded while there were no
user processes running other than the tracking systems. The reader is also reminded what
these tests show. They do not compare the proficiency or accuracy of the results (though
this comparison is made briefly in section 5.4). Instead they show the resource usage of
both systems, as one of the author’s main concerns was the speed of the roboearth tracking
system. It was decided that a valid justification of the system presented here would be how
it performs relative to this.

During the benchmark testing, the roboearth system was ran against a model of a small
radio controlled helicopter. This model was built with the roboearth model creation software
(distributed with the roboearth ROS stack). The tracking system reported in this project
was ran against a radio controlled race car. As is visible from figures 5.1 and 5.2, the tracker
system surpasses the roboearth system in terms of CPU usage, with the roboearth system
regularly freezing during execution and showing a high I/O wait time. The reason for this is
the high memory requirements of the roboearth system. The software requires that a model
of the object being detected be held in memory, so as every point cloud rendered via the
sensor data can be compared against the model in order to extract it’s location. The blob
tracking system has no such requirement, and is therefore much more lightweight.

In order to elaborate this further, a memory usage comparison was also graphed. Figures
5.3 and 5.4 show the percentage of memory used throughout execution of both systems. The
graph shows the expected result based on the previous CPU benchmark; that the roboearth
system’s model residing in memory is the biggest factor in the memory consumption.

Page 21 of 29

Figure 5.1: Graph representing CPU usage
during execution of the Roboearth object de-
tection software. The graph shows a high I/O
wait time, as the processor was busy accessing
memory and awaiting input due to the large
data of the helicopter’s 3D point cloud model.
The graph measures CPU usage against sys-
tem timestamps. The blue line represents
the user processes running, in this case the
roboearth software, and the black line shows
the I/O wait of the processor.

Figure 5.2: Graph representing CPU usage
during execution of the tracking system. In
contrast to the roboearth system, the tracker
shows more optimal CPU usage, as without the
bulky model, less time is spent on I/O waits
while accessing memory. The blue line repre-
sents the tracker system, comprised of three
running processes.

Figure 5.3: Graph representing memory us-
age of the roboearth system during execution.
The blue line shows the application bringing
the machine’s available memory down below
50MB.

Figure 5.4: Graph representing memory usage
during execution of the tracking system. The
blue line shows the memory still available for
the machine. Although it is still quite low,
it is indeed higher than that of the roboearth
system.

Page 22 of 29

RoboEarth Tracker
Memory High memory consumption due to

object model. Uses 2 sperate pro-
cesses to perform task.

Low memory consump-
tion, uses 3 processes

Model Bases it’s detection on point cloud
to model comparison.

No pre-determined ob-
ject model

CPU Low CPU utilisation due to high
I/O wait. Occasionally freezes on
the machine the software was tested

High CPU utilisation.
As far as was tested, the
system will run indefi-
nitely.

Number of detectable objects Limited to a single loaded object
model.

Can detect any change
in the scene. Blob
tracker surpassed
50 blob ID’s during
testing.

Table 5.1: Summary of the comparison results between the roboearth software and the
project’s tracking system.

5.3 Critical Analysis

An important caveat to remember in these tests is the accuracy/memory tradeoff of both
systems. While these results may seem to make the tracker appear to be a far superior
system, the reason it’s footprint is so small is due to the lack of a concrete model. The
tracker system reacts to movement in the scene. It has no correlation to any model and
can therefore not be used to locate a specific object in the scene, just report the location
of the largest animated object detectable in the scene. It is true to say that the roboearth
software can detect inanimate objects in the scene, and it does this with a degree of accuracy
proportional to the quality of the model used. The roboearth system can also estimate the
pose of the object due to the model. The tracker system in this project cannot indicate the
pose of any object it detects. However, a mutual hindrance to both systems is the problem of
occlusion. Both systems are susceptible to a loss in detection if an object becomes occluded
by another foreground object. The roboearth system tackles this problem by partial model
estimation, the tracking system in this project is assisted by the Kalman filter applied to the
main tracking algorithm. Table 5.1 gives a summary of the pros and cons of both systems.

5.4 Conclusions

Conclusions drawn from these benchmark tests clearly show that the hybrid tracker performs
better in terms of system resource consumption. This is a very desirable feature, one that
could make it possible to execute the system in a constrained environment (such as an em-
bedded sensor environment). Also, the tracker is completely modular; all components that
make up the system can operate alone, providing their own processed output from their re-
spective input streams. However, the tracker’s biggest (and depending on the application,
devastatingly fatal) flaw is it’s accuracy. As has been stated countless times already, this
tracker implements a segmentation algorithm that allows it to respond to changes in the
foreground of the image. In a critical system, where it is absolutely essential to have an

Page 23 of 29

accuracy threshold in the region of 90% +, this tracker would not be suitable. However, the
tradeoff is that the tracker operates in a less resource hungry manner. The roboearth soft-
ware is also not to be undermined. The software would surely operate better on a stronger
machine, such as a high end desktop machine. Also, another way to improve performance
would be to implement the software in a more distributed manner, benefiting from ROS’s
message passing framework. This optimised distributed framework is desccribed in 6.2.

Page 24 of 29

Chapter 6: Future Work

This chapter suggests possible additions and augmentations to the tracking system which
could allow it to operate as part of a bigger system. It briefly states possible improvements
that could be made and acts as a closing comment to the report by providing the authors
own view of the project.

6.1 Autonomous Control of a Robot

One of the goals suggested at the beginning of the project was to build a helicopter robot,
complete with a system control that could be operated by a user or could be implemented
as an autonomous control system. One of the modules that would be required for such a
task would be a tracker, capable of relaying back to the control center the current location of
the robot at any given time. Acknowledging the criticisms given in section 5.3, this tracker
could be improved further by perhaps providing a more sophisticated algorithm (such as
[HLGT03]) and deploying the system on a faster machine. Then this tracker could possibly
be used in such an environment.

6.2 Optimisations and Distribution

There are many optimisations that could be made to the code. For example, the threaded
nature of the visualizer can cause a delay in the point cloud rendering. This is probably
due to the efficiency of the application code. With more time, this could perhaps have been
optimised to allow for a smoother rendering process. Another more UI friendly feature that
could have been added was a command panel allowing the user to open and close particular
parts of the system at will. This however, was not implemented for this project as the author
believed it to be unnecessary in demonstrating what the project does.

The most important optimisation as far as this author is concerned would be in creating
a distributed environment for the code to run. As ROS natively accomodates the use of
multiple machine control of the operating system, it is obvious that the next step would be
in utilising this to speed up the system. As the tracker is already modular, components could
easily be executed on separate systems, allowing for more processing to be done per frame.
This processing could range from adding an extra filtering mechanism to the optical tracker,
rendering a faster point cloud, and producing more relevant data than the location of the
object (velocity etc.). Of course by lessons learned from the roboearth detector, the system
could be modified to also include a model of the object being detected. A single machine
could be used to load the model alone, allowing another machine to process the system itself,
providing even better performance. This would enable the tracker to filter out unwanted
objects and also provide a fast tracking paradigm with pose estimation thanks to the model.

Page 25 of 29

6.3 Closing Comments

This project applied modern sensor technology to the tracking problem. With the help of
rich API’s, a system that does indeed perform as is stated in this report was built. This
report detailed the process in taking the project from formal specification through to design
and implementation. The strengths and flaws of the system were discussed and analysed,
and a comparison was made with similar system.

This report has hopefully presented to the user with a best understanding possible of the
tracking system developed. Accompanying the report is the project implementation along
with a generated documentation directory. This directory contains instructions for installa-
tion of the system as well as details on the code implementation. It is the author’s wish that
the reader may attempt to install the system where possible, to get a direct interpretation of
the system during execution.

Page 26 of 29

Bibliography

[DOL+05] Mauro Dragone, Ruadhan O’Donoghue, John J. Leonard, Gregory O’Hare, Brian
Duffy, Andrew Patrikalakis, and Jacques Leederkerken. Robot Soccer Anywhere:
Achieving Persistent Autonomous navigation, Mapping and Object Vision Track-
ing in Dynamic Environments. SPIE Opto Ireland, 2005.

[HLGT03] Weiman Huang, Liyuan Li, Irene Y.H Gu, and Qi Tian. Foreground Object
Detection from Videos Containing Complex Background. 2003.

[KB01] Pakorn KaewTraKulPong and Richard Bowden. An Imporoved Adaptive Back-
ground Mixture Model for Real-Time Tracking with Shadow Detection. 2001.

[QGC+09] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: An open-source Robot
Operating System. In Proceedings of the International Conference on Advanced
Robotics (ICAR), Munich, Germany, June 22-26 2009.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011.

[SG99] Chris Stauffeur and W.E.L Grimson. Adaptive Background Mixture Models for
Real-Time Tracking, 1999.

[Sun11] Kelvin Sung. Recent Videogame Console Technologies. IEEE, 2011.

[WB06] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter, 2006.

[WBC+11] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J.M.M. Montiel, A. Perzylo, B. Schiessle,
M. Tenorth, O. Zweigle, and R. van de Molengraft. Roboearth. Robotics Au-
tomation Magazine, IEEE, 18(2):69 –82, june 2011.

Page 27 of 29

Appendix A: Appendix

Listed below are various extensions to references in the text. They are here to provide the
reader with extra detail that may be required but was not present in the main report chapters.

A.1 Boost library

The boost C++ library is a library consisting of header files which implement various useful
extensions to the C++ language. Boost was used in this project to provide its implemen-
tation of smart pointers. A smart pointer is a handle on a region of memory that provides
management of the object being referenced. One of its widely used cases is in automatic mem-
ory management. With a smart pointer, the object being referenced will be automatically
deleted when the pointer itself is destroyed or at another time, dictated by the underlying
deletion policy of the pointer. The following code snippet can be used to create one variant
of the smart pointer, the scoped pointer:

void function()

{

{

boost::scoped_ptr<my_object> objPtr(new my_object());

// Perform some action

objPtr->get_result();

}

// From here on, objPtr cannot be used but there is no

// fear of a memory leak as the pointer only lives within

// the above block’s scope

}

As both ROS and PCL use the boost library heavily for this feature, to comply with this
convention (and to also benefit from it) this project incorporates the boost library into its
implementation as well.

A.2 Application Programming Interfaces

A.2.1 OpenCV

The project utilised many different API’s. OpenCV, the main computer vision API, was
originally developed at Intel corporations and is now maintained at Willow Garage
(http://www.willowgarage.com) and provides implementations of many widely used com-
puter vision algorithms. The OpenCV project has been in development since 1999, and is

Page 28 of 29

(http://www.willowgarage.com)

regarded as one of the best high end computer vision libraries available.

A.2.2 PCL

Point Cloud Library (PCL), another branch from willow garage, is an ever-increasing library
for 3D processing. Similarly to OpenCV, it provides high level solutions to common 3D
processing problems.It can be downloaded from http://www.pointclouds.org and is also
freely available and open sourced.

A.2.3 Qt

Qt is an API developed by the mobile phone company Nokia. Originally developed by
Trolltech, Qt provides a C++ framework for creating applications which use the qmake build
tool. This tool allows Qt to use some of its custom utilities such as the ‘signals and slots’
framework. Qt was also the main API for development of mobile applications for Nokia’s
Symbian operating system. For more information see http://qt.nokia.com/products/

A.3 Definitions

Various definitions of terms used in the text. All definitions are given in the user’s own words,
hence the lack of citations.

Bayesian Rules:
A set of hypotheses that state how a belief or understanding of a system of expressions
should change in order to correctly describe the outcome of events, subject to changes
in observation.

Temporal Differencing:
A process which filters information based on the time observed.

Inter Process Communication:
A means of sharing data and communicating between processes residing in their own
address space within an operating system.

Revision Control:
Automatic file system configuration management. Allows the creation of repositories
in a file system for file backups.

STL:
Acronym for standard template library, the standard library for C++ programming. It
forms a collection of algorithmic and data structure implementations that are common
in everyday C++ programs.

Page 29 of 29

http://www.pointclouds.org
http://qt.nokia.com/products/

	Table of Contents
	Abstract
	Introduction
	Preamble
	Initial Specification & Overview
	Tracking
	Justification
	Roadmap

	Background Research
	Preamble
	Technology
	 XBox Kinecttm
	Robot Operating System
	Point Cloud Library

	Algorithms and Research
	Object Detection in 2D: Foreground & Background Segmentation
	 Object Detection in 2D: Adaptive Background Mixture Model for Real-Time Tracking
	Kalman Filter

	Design
	Preamble
	Design Specification
	Software Practices
	Work Breakdown Structure

	 Project Implementation
	Preamble
	System Overview
	 2D Tracking Using OpenCV
	Object Detection and Blob Tracking
	Blob Recording and Message Passing

	3D Visualization and Augmented Tracking With PCL
	Visualizing Point Cloud Data
	Augmented 3D Tracking

	Message Passing in ROS
	Summary

	 Results & Conclusions
	Preamble
	Performance Benchmarking
	 Critical Analysis
	 Conclusions

	 Future Work
	Autonomous Control of a Robot
	 Optimisations and Distribution
	Closing Comments

	Appendix
	 Boost library
	Application Programming Interfaces
	 OpenCV
	 PCL
	 Qt

	 Definitions

